Topical issues of forest pest monitoring using the pheromone method in the forest tracts of the State Enterprise "Zarichanske Forestry" are substantiated, and the organizational aspects of this promising event in the fight against major pests of forest plantations in the State Enterprise "Zarichanske Forestry" are considered.

The subject of the work is the physiological features of conifers and leaf-eating forest pests, which are common in the forests of the State Enterprise "Zarichanske Forestry". Particular attention in the research process was paid to such forest pests as: pine luboid, apical bark beetle, six-toothed bark beetle, pine sawfly, pine goldfinch, May beetle, marble beetle. These species have become widespread not only in the forest edatopes of the State Enterprise "Zarichanske Forestry", but also in the forest ecosystems of the Zhytomyr Regional Department of Forestry and Hunting. All of the above forest pests cause significant damage to forest stands at different ages. A significant degree of entomological load per unit
of forested area in the conditions of the State Enterprise "Zarichanske Forestry" exacerbates the harmful effects of the above pests, which leads to massive damage to forests, their drying and death.

The aim of the work is a detailed study of the possibility of using the method of pheromone diagnostics and monitoring of forest pests, as well as the possibility of preventing the destruction of forest edatopes on the example of the State Enterprise "Zarichanske forestry".

The main methods of work on the introduction of pheromone monitoring of forest pests are calculation and analytical collection and processing of the results of forest entomological examination of pine, oak, birch plantations, monitoring of the impact of different types of pheromone traps on the effectiveness of entomological forecasts, as well as conducting route surveys of arriving and mature stands to determine the nature of drying depending on the degree of damage by different species of needles and leaf-eating pests.

According to the results of the work, it was established that pheromones are a very effective method of monitoring and diagnosing various types of forest pests. It was found that most of the studied forest pests respond quite effectively to pheromonization and this will further allow not only to monitor but also to predict possible outbreaks of mass reproduction of forest pests in the conditions not only of the State Enterprise "Zarichanske Forestry" Zhytomyr Polissya in particular.

The scope of the research results is forestry enterprises of the Zhytomyr Regional Department of Forestry and Hunting in order to preserve and protect pine, oak, aspen, birch, alder forest plantations from forest pests in the Polissya region of Ukraine.

The conclusions of the research are that the use of pheromones in pheromone traps allows to detect the presence of the species in nature, the beginning of flight of the adult pest and to determine the time for measures
to destroy it, to obtain data on the number of poisoned pests during the flight or other period of time. Conduct forest pathological observations of changes in the number of pest populations. The pheromone method of diagnosis makes it possible to objectively count the outbreaks of certain species of forest pests and the ability to compare their current numbers with the number of pests of previous years. Promptly implement measures to carry out forest protection measures in the Polissya zone of Zhytomyr region. Practical recommendations for the use of pheromones for monitoring and forecasting of coniferous and leaf-eating pests are given, the threshold (economically dangerous) quantities of catching pests with pheromone traps are recommended. As a result of our research, we found that the maximum criterion for catching silkworms-nuns in pine plantations during the flight is 50 males / ha. The traps are placed at the rate of 4-6 pcs. on 3-5 hectares. For the unpaired silkworm, this figure is 60 males, for the pine moth - 30. Pheromone traps are essential in determining the direction and rate of spread of populations of major coniferous and leaf-eating pests.

We found that the use of pheromone traps in accounting areas located in hard-to-reach habitats of pests has significant prospects, where the use of traditional methods of counting (route-key ground survey with felling of trees and knocking) at the beginning and end of the season remains almost the only method. observation and requires large labor and material costs. It has been established that pheromone traps make it possible to study previously unknown aspects of the biology and ecology of pests of the squamous family. It is investigated that the variability of some morphological characteristics of adult insects during the flight season, as well as the mechanisms of sexual communication of adults, the study of which is of great importance in the organization of the pheromone monitoring system. It is substantiated that the use of pheromone traps for monitoring forest entomological studies is especially appropriate at extremely low densities of
forest pest populations, when it is almost impossible to detect the insect visually. It is proved that the use of pheromone traps allows to predict the timing of measures to control leaf and coniferous rodent pests in forest stands. As a result of research, we have proved that pheromone traps are used as a means to reduce the number of males by catch, ie to create a so-called male vacuum, thus trying to increase the number of unfertilized females in the population. The results of research confirm that this method of control of scale insects is possible only in relatively small isolated forest stands with a low number of pests and is often ineffective. We found that this method is most often applied to bark beetles and to a lesser extent to beetles. During the research, we observed numerous examples of reducing the loss of forest stands when catching bark beetles in this way.

Keywords: pheromones, traps, coniferous-rodent pests, leaf-rodent pests, monitoring, prognosis, adult.

член сільськогосподарських наук, доцент Левченко В. Б., член сільськогосподарських наук, доцент Шульга І. В., член біологічних наук, доцент Немерицька Л. В., член сільськогосподарських наук Журавська І. А., викладач вищої категорії, викладач-методист Романюк А. А., Організація та моніторинг шкідників лісу з використанням феромонів в умовах Державного підприємства «Зарічанське лісове господарство»/ Житомирський агroteхнічний коледж. Україна. Житомир. Поліський національний університет. Україна. Житомир.

Обґрунтовано актуальні питання моніторингу шкідників лісу з використанням феромонного методу в умовах лісових урочищ Державного підприємства «Зарічанське лісове господарство», а також розглянуто організаційні аспекти цього перспективного заходу в боротьбі з основними шкідниками лісових насаджень.
Предметом роботи є фізіологічні особливості хвоє- та листогризучих шкідників лісу, що поширені в лісових масивах Державного підприємства «Зарічанське лісове господарство». Особливу увагу в процесі досліджень звертали на таких шкідників лісу, як: сосновий лубоїд, верхівковий короїд, шести зубчатий короїд, сосновий пильщик, соснова златка, травневий хрущ, мармуровий хруш. Саме ці види набули масового розповсюдження не лише в лісових едатопах Державного підприємства «Зарічанське лісове господарство», а і в лісових екосистемам Житомирського обласного управління лісового та мисливського господарства. Всі вище перелічені шкідники лісу завдають досить значної шкоди лісовим насадженням у різному віці. Значний ступінь ентомологічного навантаження на одиницю лісопокритої площі в умовах Державного підприємства «Зарічанське лісове господарство» підсилюють шкодочинну дію вищенаведених шкідників, що призводить до масового пошкодження лісових насаджень, їх всихання та загибелі.

Метою роботи є детальне вивчення можливості використання методу феромонної діагностики та моніторингу шкідників лісу, а також можливість запобігання ураженню лісових едатопів на прикладі Державного підприємства «Зарічанське лісове господарство».

Основними методами проведення робіт по запровадженню феромонного моніторингу шкідників лісових насаджень є розрахунково-аналітичний по збору і обробці результатів лісотомологічної експертизи соснових, дубових, березових насаджень, проведення моніторингу впливу різних видів феромонних пасток на ефективність ентомологічних прогнозів в лісових едатопах Державного підприємства «Зарічанське лісове господарство», а також проведення маршрутних обстежень.
пристигаючих і стиглих деревостанів з визначенням характеру всихання в залежності від ступеня пошкодження різними видами хвоє- та листогризучих шкідників.

За результатами роботи було встановлено, що феромони є досить ефективним методом проведення моніторингу та діагностування різних видів шкідників лісу. Встановлено, що більшість з досліджуваних шкідників лісових насаджень досить ефективно реагують на феромонізацію, і це в подальшому дасть змогу проводити не лише моніторинг, але і прогнозування можливих спалахів масового розмноження шкідників лісу в умовах не лише Державного підприємства «Зарічанське лісове господарство», але і в зоні Житомирського Полісся зокрема.

Сферою впровадження результатів досліджень є лісогосподарські підприємства Житомирського обласного управління лісового та мисливського господарства, лісові урочища в яких проводились відповідні заходи з метою збереження та захисту соснових, дубових, осикових, березових, вільхових лісових насаджень від шкідників лісу в умовах зони Полісся України.

Висновки досліджень полягають в тому, що застосування феромонів в феромонних пастках дозволяє виявити наявність виду в природі, початок льоту імаго шкідника і визначити терміни для заходів по його знищенню, отримати дані про кількість отруєних шкідників за період льоту або інший відрізок часу, враховувати ефективність лісозахисних заходів, проводити лісопатологічні спостереження за зміною чисельності популяцій комах-шкідників. Феромонний метод діагностики дає можливість об’єктивного підрахунку спалахів чисельності певних видів шкідників лісу і можливості порівняння поточної їх чисельності з кількістю шкідників минулих років, оперативно впроваджувати заходи по проведенню
лісозахисних заходів в умовах зони Полісся Житомирської області. Наведено практичні рекомендації щодо застосування феромонів для моніторингу та прогнозування хвоє- і листогризучих шкідників, рекомендуються наведені порогові (господарсько-небезпечні) кількості вилову шкідників феромонними пастками. В результаті проведених досліджень нами було встановлено, що граничний критерій вилову шовкопряда-монашки в соснових насадженнях за період льоту становить 50 самців/га. При цьому пастки розміщують з розрахунку 4-6 шт. на 3-5 га. Для непарного шовкопряду цей показник дорівнює 60 самців, для соснової совки - 30. Феромонні пастки вкрай необхідні при встановленні напрямку та швидкості поширення популяцій основних хвоє- і листогризучих шкідників. Нами встановлено, що значні перспективи має застосування феромонних пасток на облікових площах, розташованих в важкодоступних місцях проживання шкідників, де застосування традиційних методів обліку чисельності (маршрутно-ключове наземне обстеження зі звалюванням облікових дерев і обстукування) на початку і в кінці сезону залишається практично єдиним методом спостереження і вимагає великих трудових і матеріальних витрат. Встановлено, що феромонні пастки роблять можливим вивчення раніше невідомих аспектів біології та екології шкідників з родини лускокрилих. Досліджено, що мінливості деяких морфологічних характеристик імаго комах протягом льотного сезону, а також механізм їх статевої комунікації має велике значення в організації системи феромонного моніторингу. Обґрунтовано, що застосування феромонних пасток для моніторингу лісо-ентомологічних досліджень особливо доцільно при вкрай низьких щільностях популяції шкідників лісу, коли практично неможливо виявити комаху візуально. Доведено, що використання феромонних пасток дозволяє прогнозувати
termіни проведення заходів по боротьбі з листо- та хвоєгризучими шкідниками в лісових насадженнях. В результаті проведених досліджень ми довели, що феромонні пастки використовують і як засіб для зниження чисельності самців методом вилову, тобто для створення так званого самцевого вакууму, намагаючись збільшити тим самим кількість незапліднених самок в популяції. Результати досліджень підтверджують, що такий метод боротьби з лускокрилими можливий лише в порівняно невеликих ізольованих лісових насадженнях при низькій чисельності шкідників і часто малоефективний. Ми встановили, що найбільш часто цей метод застосовується по відношенню до короїдів і в меншій мірі - до жуків-лоскунів. Під час проведення досліджень ми спостерігали численні приклади скорочення загибелі лісових деревостанів при вилові короїдів таким способом.

Ключові слова: феромони, ловушки, хвоє-гризучі шкідники, листо-гризучі шкідники, моніторинг, прогноз, імаго.

Вступ. Внутрішньо-популяційний зв'язок між особинами у комах здійснюється, головним чином, за допомогою хімічно активних речовин - статевих феромонів, що виділяються в зовнішнє середовище і несуть певну біологічну інформацію про вид комах і їх біологічний стан. Статеві феромони - необхідний засіб в проведені моніторингу і боротьби зі шкідливими комахами, практика показала перспективність їх застосування в захисті рослин. Дія феромонів дуже специфічна і не впливає на інші тваринні організми. Використовуючи «мову запахів» комах і регулюючи їх найважливіші життєві процеси, можна контролювати чисельність популяцій господарсько-важливих видів. Феромони класифікуються залежно від типу інформації, що передається. Існують феромони статеві, агрегаційні, слідові, феромони
тривоги. Для захисту рослин найбільший інтерес представляють перші два типи. Статеві феромони інформують особин про наявність готового до спарювання статевого партнера і його місцезнаходження в лісовому едатопі. Вони випускаються, найчастіш, самками. Феромонні агрегації характерні для жуків ряду Coleoptera, напівжорсткокрилих Hemiptera і деяких інших рядів. Їх функція полягає в збільшенні щільності популяції біля джерела феромона (вони близькі за дією до речовин, які виділяються ослабленими або пошкодженими лісовими деревостанами). Феромони комах складаються з декількох компонентів, частка яких не однакова. Кожен компонент або їх суміш є носієм будь-якої інформації. Серед компонентів статевих феромонів присутні наступні: основні компоненти, що відповідають за спонукання самця до польоту і його дистанційну орієнтацію; додаткові компоненти, що сприяють цілеспрямованому відшукуванню джерела запаху і посадці поблизу нього; компоненти, що діють на дуже невеликій відстані і які спонукають комахи до здійснення комплексу поведінкових реакцій, необхідних для успішного парування. Такі сполуки становлять не більше 10% основних компонентів. Незважаючи на те, що статеві феромони комах складаються часом з 5 - 6 компонентів, а у озимої совки (Agrotis segetum) їх більше 15, практика показує, що для успішного використання досить лише 2 -3 компонента. Для комах, феромони яких дослідженні найбільш докладно, таких прикладів безліч. Як правило, з великої кількості компонентів найважливішими є ті, вміст яких в феромонах найбільш високий. Необхідно, щоб з'єднання викликало орієнтаційний політ комахи і посадку поблизу джерела феромонної інформації. Зовсім не обов'язково викликати поведінкові реакції комах в процесі їх залицяння і спарювання. Зробивши посадку поблизу статевого партнера, комаха вже виявляється в пастці. Тому, враховуючи всі ці особливості біології комах-шкідників лісу, досить
доцільно вивчати феромонізацію як перспективний і ефективний метод моніторингу, діагностування та прогнозу спалахів в розвитку і поширенню комах які шкодять лісові.

Аналіз останніх досліджень і публікацій, в яких започатковано розв’язання проблеми. Феромонна пастка - це спеціальний пристрій відловлювати комах, залучених джерелом феромону (диспенсером), розташованим в цій пастці [1, с.27-34]. Для феромонного моніторингу використовують різноманітні конструкції феромонних пасток і безліч їх модифікацій [2, с.12-46]. Конструкція дуже впливає на кількість залучених і спійманих комах. Пастки виготовляють з ламінованого паперу або пластика [3, с.34-85]. Феромонні пастки, які використовуються в сучасних системах моніторингу, класифікуються в залежності від їх конструктивних особливостей і принципу фіксації спійманих комах [4, с.27-56]. Фіксація комах в клейових пастках відбувається за рахунок прилипання до клейової поверхні [5, с.34-78]. Клейові пастки мають кілька модифікацій. Крилові пастки (рис. 1) складаються з двох частин (верхньої і нижньої), з’єднаних дротом по 4-м кутам і відкритих для проникнення комах з усіх боків [6, с.43-56]. Обидві частини зсередини мають незамінювані клейкі поверхні. Застиюються для вилову таких видів, як листовійки Choristoneura fumiferana, Archips argyrospilus і деяких інших [7, с.56-84]. Трикутні пастки (рис. 2) - найпоширеніший тип пасток [8, с.34-46]. Вони мають форму трикутної призми з воронкоподібними трикутними вхідними отворами по торцях [9, с.67-85]. Іноді на боці пастки роблять прозоре поліетиленове вікно. Самці, що володіють позитивним фототаксисом, відволікаються від вхідних отворів, таким чином знижується ймовірність їх вильоту з пастки [10, с.12-34]. Рекомендується для вилову зеленої дубової (Tortrix viridana) і глодової листокруток (Archips crataegana), соснової совки (Panolis
Коробчаті інсектицидні пастки (рис. 3) без- клейової поверхні типу «молочний пакет» [3, с.21-35]. За формую являють собою чотиригранну прямокутну призму з вхідними отворами з 4-х сторін у верхній частині пастки і дах, який спрямовує метеликів до вхідних отворів [2, с.43-56]. Вони зручні тим, що мають досить велику ємність [4, с.34-56]. Тому її називають не насичуваною пасткою. Як діючий препарат в них використовують інсектицидні пластинаї [3, с.45-68]. Широке поширення коробчасті пастки отримали в США в системі моніторингу непарного шовкопряда. Використання коробчастих пасток представляється найбільш зручним і економічним [6, с.23-45]. Вони здатні відловлювати велику кількість великих метеликів, залишаючись функціональними протягом довгого часу [8, с.45-52]. У клейових пастках липкі поверхні часто виходять з ладу, засмічуючись потрапившими в них сторонніми видами комах, і вимагають заміни протягом п'ятого сезону основного шкідника [4, с.35-52].

Крім того, як показали дослідження, при вилові великих метеликів, клейкі пастки швидко виходять з ладу, забиваючись лусочками крил [9, с.23-45]. Проте, в «Методичних вказівках по використанню синтетичних феромонів для нагляду за хвоє- і листогризучими комахами» вилов соснового шовкопряда (щодо великих метеликів) рекомендований саме клейкими пастками [10, с.34-42]. Рідкі пастки схожі з коробчастими, але фіксація комах в
них відбувається з допомогою будь-якої рідини, що володіє інсектицидними властивостями [8, с.44-56]. Пастки виготовляють з негігроскопічного картону або пластику. Використовуються для вилову совок (Diparopsis castanea, Spodoptera littoralis), горохової плодожерки (Cydia nigricana) [2, с.45-56]. Для вилову короїдів використовують пастки-імітанти стовбурів дерев з дротяної сітки у вигляді циліндрив з обрубками стовбурів, заселеними жуками, або просоченіми синтетичним атрактантом, пастки у вигляді вставлених один в одного декількох пластикових конусів, а також бар’єрні пастки (рис. 4) [10, с.34-68].

Формулювання мети статті та завдань досліджень. Об’єктом наших досліджень були лісоутворюючі деревостани Державного підприємства «Зарічанське лісове господарство», а також осередки ураження лісових деревних насаджень різними видами шкідників в умовах Державного підприємства «Зарічанське лісове господарство». Крім цього досліджувались біологічні процеси, що виникають в процесі життєдіяльності комах-шкідників лісу і, як правило, проходять в лісових екосистемах. Досліджувався вплив феромонного методу лісоентомологічного моніторингу кількісного і видового складу шкідників
лісу і його ефективність як методу прогнозування їх розвитку та поширення. Завданням досліджень було проаналізувати вплив феромонних пасток на можливість обліку чисельності та видової ідентифікації шкідників лісових едатопів в умовах як Державного підприємства «Зарічанське лісове господарство», так і всього Житомирського Полісся зокрема, а також наведено практичні рекомендації щодо застосування феромонного методу прогнозу можливих спалахів чисельності шкідників лісових насаджень, їх поширення, напрямів міграції в основних типах лісів в умовах Житомирського Полісся. Для проведення досліджень було обстежено осередки ураження соснових, дубових, березових, осикових, вільхових, насаджень хвоє та листогризучими шкідниками в умовах Корбутівського лісництва ДП «Зарічанське ЛГ» у віці 30-40, 50-80, 90-120 років. Пробні площі по визначенню, прогнозу та моніторингу основних хвоє- та листогризучих шкідників лісу закладено за загальноприйняттою методикою, на них здійснювали суцільний перелік дерев і фіксували їх стан за шкалою згідно з нормативним документом «Санітарні правила в лісах України». Характер ураження лісових деревостанів основними листо- та хвоєгризучими шкідниками визначався за пошкодженням органів рослин, тому ураження часто носило осередковий характер. В осередках ураження основних деревостанів віком 45-60 років (ураженість насаджень становила від 50 до 65% відповідно) було виявлено масове всихання від пошкодження сосни звичайної сосною златкою, верхівковим короїдом, шести зубчатим короїдом. Проведення обліків в умовах пробних площ здійснювали по прокладених моніторингових маршрутках. Для проведення обліків використовували методику обстеження пробних площ лісових масивів. В процесі проведення ентомологічної експертизи, особливу увагу звертали на виявлення основного та
прихованого ураження насаджень сосни звичайної імаго соснової златки, соснового лубоїду, верхівкового короїду, шести зубчатого короїду. Крім цього, ставилось завдання виявити вплив феромонів на шкідливих комах лісу і можливість використання цього методу для проведення ентомологічного прогнозу в умовах лісових едатопів Державного підприємства «Зарічанське лісове господарство». Всі результати лісопатологічної експертизи записувались нами в реєстраційний журнал проведення досліджень.

Виклад основного матеріалу статті. В результаті проведених досліджень нами було встановлено, що для успішного застосування феромону при моніторингу кількості шкідників лісових деревостанів дуже важливо підібрати тип феромонного диспенсера (пристрою, який випускає феромон в зовнішнє середовище). Ми встановили, що використовуваний нами феромонний диспенсер повинен бути виготовлений з хімічно інертного матеріалу, який не змінює молекулярної структури феромону-наповнювача. Дуже важливо, щоб диспенсер рівномірно випускав феромон протягом всього періоду при досліджувані льоту комахи. Цей період розрізняється для різних видів шкідників і може тривати до 3 місяців. Гумові диспенсери, що інколи нами використовувались, як правило, випускають велику частину феромону протягом тижня, тому вони малопридатні для моніторингу шкідників. В ході свої досліджень ми широко використовували диспенсери з поліхлорвініловим і парафіновим покриттями. Вони не відлякують комах і досить довговічні, що також є важливим в процесі феромонної діагностики, прогнозу та моніторингу розповсюдження листо- та хвоєгризучих шкідників лісу.

В результаті проведених досліджень ми встановили, що феромонні пастки доцільно використовувати в двох напрямах - застосування феромонів в феромонних пастках, що в свою чергу
дозволяє отримати наступну інформацію: виявити наявність виду в природі, початок льоту імаго шкідника і визначити терміни для заходів по його знищенню, отримати дані про кількість отруєних шкідників за період льоту або інший відрізок часу, враховувати ефективність лісозахисних заходів. Другим напрямом використання феромонних пасток є їх розвішування під час льоту шкідників лісу, з метою моніторингу і прогнозування їх видової різноманітності. Ми встановили, що в основному запропоновані нами феромонні пастки служать для спостереження за зміною чисельності популяцій лісових комах-шкідників. Для цього пастки розміщують в типових для їх розмноження лісових насадженнях. Їх вивішують на гілках дерев на початку льоту комахи і знімають по його закінченню. Потім підраховують вилов комах і порівнюють ці результати з аналогічними кількостями виловів минулих років. В залежності від стану популяції приймають рішення про проведення лісозахисних заходів. В рекомендаціях «Щодо застосування феромонів для нагляду за хвоє- і листогризучими комахами» наведені порогові (господарсько-небезпечні) кількості вилову хвоє та листогризучих шкідників феромонними пастками. Нами було встановлено, що, граничний критерій вилову шовкопрядамонашки в соснових насадженнях за період льоту становить приблизно 50 самців/га. При цьому, для проведення моніторингу пастки ми розміщували з розрахунку 4-6 шт./3-5 га. Для непарного шовкопряду цей показник дорівнює 60 самців, для соснової совки - 30.

Нами встановлено, що феромонні пастки вкрай необхідні при встановленні напрямку і швидкості поширення популяцій комах-шкідників. Особливо це спостерігалось в умовах 22, 24, 26 кварталів лісового уроцища Висока Піч, що адміністративно відноситься до Корбутівського лісництва Держаного підприємства «Зарічанське лісове господарство», де поширення імаго травневого хруща носить
фронтальний характер, і пастки сигналізують про появу цього шкідника в нових місцях проживання.

Ми встановили, що значні перспективи має застосування феромонних пасток на облікових площах, розташованих в важкодоступних місцях проживання шкідників лісу, де використання традиційних методів обліку чисельності (маршрутно-ключове наземне обстеження зі звалюванням облікових дерев і обстукування) на початку і в кінці сезону залишається практично єдиним методом спостереження за процесами міграції стовбурових шкідників лісу і вимагає великих трудових і матеріальних затрат. В процесі наших досліджень ми визначили, що сфера застосування феромонних пасток не обмежується лише виявленням даних видів в природі і урахуванням їх чисельності. Феромонні пастки роблять можливим вивчення раніше невідомих аспектів біології та екології шкідників лісу з родини лускокрилих. Зокрема ми встановили, що мінливості деяких морфологічних характеристик imago комах протягом льотного сезону, а також механізмів статевої комунікації має велике значення в організації системи феромонного моніторингу, особливо для видів-шкідників, по відношенню до яких така система ще не розроблена. Ми вважаємо, що застосування феромонних пасток для подібних досліджень особливо доцільно при вкрай низьких щільностях популяції шкідників лісових насаджень, коли практично неможливо виявити комаху візуально. Ми анонсуємо, що використання феромонних пасток дозволяє прогнозувати терміни проведення боротьби з шкідниками лісових насаджень.

Крім цього, ми вивчали можливість застосування синтетичних феромонів, а зокрема внесення їх в спеціальні гранули, які поширюють в лісових древостанах в період масового льоту певного виду лісових шкідників для статевої дезорієнтації самців при пошуку самок. На нашу
думку надзвичайно важливо поєднувати в використанні феромонних пасток і відкрите поширення феромонів. Поширення гранул є ефективним методом порушення зв'язків в природі і зниження чисельності шкідників лісу. Ми використовували феромонні пастки як засіб для зниження чисельності самців методом вилову, тобто для створення так званого самцевого вакууму, намагаючись збільшити тим самим кількість незапліднених самок в популяції. Нами встановлено, що такий метод боротьби з шкідниками лісу з родини лускокрилих можливий лише в порівняно невеликих ізольованих лісових насадженнях при низькій чисельності шкідників і, як правило, часто є малоефективний. Ми рекомендуємо застосовувати цей метод по відношенню до короїдів і в меншій мірі до жуків-поскунів. Такий метод феромонної діагностики в процесі проведених нами досліджень призводив до скорочення загибелі дерев при вилові короїдів. Так, за результатами наших досліджень в 26 кврталі 4 виділу урочища Висока Піч Корбутівського лісництва Державного підприємства «Зарічанське лісове господарство» досить ефективно вдалося припинити розвиток популяції короїда-типовита (Ips typographic). Понад 2,5 тис. жуків Scolytus multistriatus були виловлені 250 клейовими пастками.

Ми переконані, що в системі феромонного моніторингу вкрай необхідна стандартизація пасток для кожного виду, за яким ведеться спостереження.. Стандартизація повинна визначатися не тільки здатністю пастки заманювати комах, але і здатністю утримувати їх, а також зручністю монтування та практичного використання пасток. Крім стандартизації типів пасток, ми вважаємо, що не менш важлива розробка єдиного ефективного методу по їх застосуванню для кожного окремого виду шкідника лісу (місця розміщення, щільність, концентрація і склад феромону, терміни установки в різних частинах ареалу, якщо цього вимагає фенологічні фази льоту шкідників).
встановили, що від стандартизації у певній мірі залежить впровадження пасток у виробництво, а також достовірність отриманих в результаті феромонного моніторингу даних з відлову в різні роки і в різних місцях проживання виду.

У літературі зазначено, що для ефективного ентомологічного моніторингу шкідників лісових насаджень необхідно поєднувати феромонний моніторинг і традиційні методи. При проведенні наших досліджень ми помітили, що при низькій щільності шкідника, можна обмежитися лише використанням феромонних пасток. У період наростання чисельності шкідників лісових насаджень разом з використанням феромону доцільно застосовувати і інші методи обліку і прогнозу з метою уточнення кількісних показників стану популяції шкідника. При високій чисельності (коли шкідника легко виявити візуально) ми рекомендуємо застосовувати тільки звичайні методи. Ми вважаємо, що застосування феромонних пасток в цей період стає недоцільним в силу декількох чинників. По-перше, переповнення пастки комахами відбувається ще до закінчення льоту; по-друге, під дією вологи і інших комах, які потрапили в пастку відбувається розкладання шкідників з ряду лускокрилих, і їх облік стає дуже трудомістким або неможливим.

Висновки та перспективи подальших досліджень у цьому напрямку.

1. Нами встановлено, що застосування феромонів в феромонних пастках дозволяє виявити наявність виду в природі, початок льоту імаго шкідника і визначити терміни для заходів по його знищенню, отримати дані про кількість отруєних шкідників за період льоту або інший відрізок часу, враховувати ефективність лісозахисних заходів.

2. Доведено, що феромонний метод діагностики дає можливість об’єктивного підрахунку спалахів чисельності певних видів шкідників
лісу і можливості порівняння поточної їх чисельності з кількістю шкідників минулих років.

3. Запропонований нами метод феромонної діагностики моніторингу і прогнозу шкідників лісових насаджень дає можливість оперативно впроваджувати заходи лісозахисту в умовах зони Полісся Житомирської області.

4. В результаті проведених досліджень нами було встановлено, що граничний критерій вилову шовкопряда-монашки в соснових насадженнях за період льоту становить 50 самців/га. При цьому пастки розміщують з розрахунку 4-6 шт. на 3-5 га. Для непарного шовкопряду цей показник дорівнює 60 самців, для соснової совки - 30. Феромонні пастки вкрай необхідні при встановленні напрямку і швидкості поширення популяцій основних хвоє- і листогризучих шкідників.

5. Нами встановлено, що значні перспективи має застосування феромонних пасток на облікових площах, розташованих в важкодоступних місцях проживання шкідників, де застосування традиційних методів обліку чисельності (маршрутно-ключове наземне обстеження зі звалюванням облікових дерев і обстукування) на початку і в кінці сезону залишається практично єдиним методом спостереження і вимагає великих трудових і матеріальних витрат.

6. Встановлено, що феромонні дозволяють вивчення раніше невідомих аспектів біології та екології шкідників лісу з родини лускокрилих. Досліджено, що мінливості деяких морфологічних характеристик imago комах протягом льотного сезону, а також механізмів статевої комунікації має велике значення в організації системи феромонного моніторингу шкідників лісових насаджень.

7. В процесі досліджень нами обґрунтовано, що застосування феромонних пасток для моніторингових лісо-ентомологічних досліджень
особливо доцільно при вкрай низьких щільностях популяції шкідників лісу, коли практично неможливо виявити комаху візуально.

8. Використання феромонних пасток дозволяє прогнозувати терміни проведення заходів по боротьбі з листо- та хвоєгризучими шкідниками в лісових насадженнях.

9. В результаті проведених досліджень ми довели, що феромонні пастки використовують і як засіб для зниження чисельності самців методом вилову, тобто для створення так званого самцевого вакууму, намагаючись збільшити тим самим кількість незапліднених самок в популяції.

10. В результаті проведених досліджень встановлено, що такий метод боротьби з лускокрилими можливий лише в порівняно невеликих ізольованих лісових насадженнях при низькій чисельності шкідників і часто малоефективний.

11. В процесі наших досліджень ми констатували численні приклади скорочення загибелі лісових деревостанів при вилові короїдів методом феромонізації.

Література:
2. Гойчук А.Ф. (2010). Лісова фітопатологія у визначеннях, рисунках, схемах. Вид. 2-е, перероб. і доповн. Житомир, 186.
8. Клюшник П.И. (2013). Определитель дереворазрушающих грибов. М.-Л. Гослесбумиздат, 140.

References: